Generative AI Market

Global Generative AI Market Research Report: By Component (Software and Service), By Technology (Generative Adversarial Networks (GANs), Transformers, Variational Auto-encoders, and Diffusion Networks), By End-Use (Media & Entertainment, BFSI, IT & Telecommunication, Healthcare, Automotive & Transportation, Gaming, and Others), By Application (Computer Vision, Natural Language Processing (NLP), Robotics and Automation, Content Generation, Chatbots & Intelligent Virtual Assistants, Predictive Analytics, and Others), By Model (Large Language Models, Image & Video Generative Models, Multi-modal Generative Models, and Others), and Region (North America, Europe, Asia-Pacific, and Rest of the World) Global Industry Analysis, Size, Share, Growth, Trends, Regional Analysis, Competitor Analysis and Forecast 2024-2032.

ICT & Media | January 2024 | Report ID: EMR00444 | Pages: 301

The global generative AI market was valued at USD 11.24 billion in 2023 and is estimated to reach approximately USD 182.67 billion by 2032, at a CAGR of 36.3% from 2024 to 2032.

Since its debut, the generative AI market has seen a revolutionary transformation that has allowed a new period of invention and automation. Generative AI, which first appeared in the early 21st century, has quickly become well-known for its capacity to produce material on its own, including writing, graphics, music, and more. With the use of sophisticated algorithms many of which are based on deep learning models, this technology empowers computers to recognize and reproduce intricate patterns in data. Companies in a wide range of sectors have embraced generative AI with great enthusiasm to optimize their creative workflows, boost innovation, and increase productivity.

Applications for generative AI have proliferated in the market; industries including healthcare, finance, and entertainment are using it for tasks including content creation, financial modeling, and drug development. Businesses are investigating new use cases and pushing the limits of what generative AI can accomplish as the technology continues to advance. With its promise of supplementing human talents and accelerating remarkable achievements across multiple areas, the generative AI industry is primed for continuous growth. It also provides a look into a future in which robots play a crucial role in creative pursuits.

 

 

GENERATIVE AI MARKET: REPORT SCOPE & SEGMENTATION

Report Attribute

Details

Estimated Market Value (2023)

11.24 Bn

Projected Market Value (2032)

182.67 Bn

Base Year

2023

Forecast Years

2024 - 2032

Scope of the Report

Historical and Forecast Trends, Industry Drivers and Constraints, Historical and Forecast Market Analysis by Segment- By Component, By Technology, By Application, By End-Use, By Model, & Region

Segments Covered

By Component, By Technology, By Application, By End-Use, By Model, & Region

Forecast Units

Value (USD Billion or Million), and Volume (Units)

Quantitative Units

Revenue in USD million/billion and CAGR from 2024 to 2032

Regions Covered

North America, Europe, Asia Pacific, Latin America, and Middle East & Africa, and the Rest of World

Countries Covered

U.S., Canada, Mexico, U.K., Germany, France, Italy, Spain, China, India, Japan, South Korea, Brazil, Argentina, GCC Countries, and South Africa, among others

Report Coverage

Market growth drivers, restraints, opportunities, Porter’s five forces analysis, PEST analysis, value chain analysis, regulatory landscape, market attractiveness analysis by segments and region, company market share analysis, and COVID-19 impact analysis.

Delivery Format

Delivered as an attached PDF and Excel through email, according to the purchase option.

 

Global Generative AI Market Dynamics

Rapid technical breakthroughs, expanding data availability, and rising need for automation solutions are all contributing to the dynamic evolution of the generative AI industry. Deep learning algorithms' ongoing improvement is one of the primary factors driving this industry since it improves generative AI models' capacity to produce excellent and contextually relevant content. Sophisticated generative AI systems are being developed and implemented thanks in part to the explosion of big data and the accessibility of powerful computational resources. Generative AI is being used by businesses to solve difficulties in design, problem-solving, and content production, which increases output and creativity.

Growing interest in the market is evident from a variety of sectors, such as manufacturing, healthcare, and finance, as businesses realize how generative AI may streamline operations and provide new opportunities. But in addition to the encouraging trend, ethical questions and legal issues are increasingly shaping the generative AI scene. Maintaining a balance between innovation and responsible use is still a key concern, shaping the course of the market as players deal with changing legal and social norms. The market dynamics of generative AI are characterized by a complex interplay between legislative developments, ethical issues, and technological advancements as the technology continues to mature.

 

Global Generative AI Drivers

  • Technological Advancements in Deep Learning

Significant advances in deep learning architectures, including multilayer neural networks, have advanced the field within the last ten years. The development of more advanced algorithms, like convolutional neural networks (CNNs) and recurrent neural networks (RNNs), has empowered generative AI models to interpret and duplicate complex patterns inside enormous datasets. More long-range relationships and contextual information can now be captured by these models because to the addition of attention mechanisms and transformer structures, which allows for the creation of more accurate and contextually relevant material.

Furthermore, developers can now more easily access advanced generative capabilities by leveraging pre-trained models and transfer learning, which allows them to fine-tune models for particular tasks and exploit existing knowledge. The emergence of deep learning libraries and open-source frameworks like TensorFlow and PyTorch has also been essential in propelling research and development in the field of generative artificial intelligence.

  • Increasing Availability of Big Data

The volume, velocity, and variety of data generated across several sectors have increased exponentially in the past few years. Because there is a lot of data available, generative AI systems can learn and infer patterns with previously unheard-of depth and accuracy. Generic AI models are able to capture complex linkages and dependencies within the data due to the vast datasets acting as rich repositories of knowledge. This results in the creation of more sophisticated and contextually aware content.

Workflows in a variety of industries, including marketing, banking, healthcare, and entertainment, have changed as generative AI uses large data to solve challenging problems. Big data sources are broad and varied, which makes it possible for generative AI systems to adjust to the unique needs and features of various fields. The utilization of big data by enterprises to support their generative AI endeavors is creating a synergistic effect that is facilitating the discovery of novel solutions, optimizing workflows, and launching a new phase of data-driven creativity and decision-making. 

 

Restraints:

  • Regulatory Uncertainties and Compliance Challenges

The market for generative AI is severely constrained by regulatory uncertainty and compliance issues, which create a challenging environment for businesses to operate in. Regulatory organizations are struggling to develop comprehensive frameworks to manage privacy problems, ethical concerns, and potential societal repercussions as generative AI's capabilities grow. Businesses find it difficult to maintain compliance with changing regulatory requirements, which impedes the industry's growth in the absence of established standards and clear guidelines.

The challenges are made more difficult by the uncertainty around data privacy, security, and responsible AI use. Establishing a careful balance between protecting against abuse and promoting innovation becomes a challenge for industry participants and regulators alike. Strong oversight and governance procedures are more important than ever because of the possibility of unintentionally producing biased or discriminating information. The dynamic nature of legal frameworks places additional pressure on enterprises to promptly adjust to new compliance norms, which could impede the advancement and use of generative AI technology.

  • High Computational Resource Requirements

One major obstacle that prevents generative AI models from being widely adopted and implemented is their high computing resource requirements. Advanced generative AI model deployment and training require large amounts of processing power, frequently more than typical hardware infrastructures can provide. Increased expenses for specialist hardware, including GPUs and TPUs, as well as the need for sophisticated cooling systems and energy usage, result from this requirement.

In addition, real-time applications and continuous learning situations require large amounts of computer power beyond the initial training of the model. The requirement for scalable and potent computing environments grows as generative AI develops and models get bigger and more complex. The democratization of generative AI technology is hampered by this division between businesses and those without access to powerful computational resources.

 

Opportunities:

  • Creative Content Generation and Innovation

The independent creation of a wide variety of excellent material, from writing and photos to music and design components, is made possible by generative AI. This talent speeds up the creative process and makes it easier to explore new artistic horizons. Generative AI makes it possible to quickly create interesting and tailored content for use in marketing, advertising, and entertainment, improving consumer experiences and brand interactions.

Furthermore, by offering a never-ending supply of ideas and inspiration, generative AI acts as a catalyst for creativity. It can support ideation sessions, offer fresh concepts for designs, and even co-create with human colleagues. By fostering a synergy that surpasses conventional approaches, the collaborative dynamic between creatives and machines propels industries towards unprecedented heights of invention. The potential is many, ranging from helping to conceptualize ground-breaking ideas to automating regular design duties.

  • Healthcare Advancements and Drug Discovery

Generative AI holds revolutionary potential for the healthcare industry, especially for breakthroughs and medication discovery. Generative AI is a valuable tool in healthcare due to its ability to handle complicated and data-intensive operations, ranging from drug development to patient diagnostics. Generative AI models can examine large databases of genetic data, medical imaging, and patient histories to help medical practitioners make quick and accurate diagnoses. Furthermore, by anticipating molecular structures, modeling drug interactions, and optimizing chemical compounds, generative AI is essential to the drug development process, accelerating the identification of promising therapeutic options.

The research and development cycle is accelerated by generative AI's capacity to identify complex patterns in biological data, which may shorten the time and expense required to introduce novel medications to the market. It makes it possible to explore a large chemical space and suggests new compounds that may be used to treat a variety of illnesses. Pharmaceutical companies can concentrate resources on the most promising prospects, optimize their research pipelines, and perhaps uncover novel therapeutics as a consequence.

 

Segment Overview

  • By Component

Based on components, the global generative AI market is divided into software and service. The software category dominates the market with the largest revenue share in 2023. This section covers the several platforms and software programs that facilitate the development, training, and application of generative artificial intelligence models. A variety of tools, frameworks, and libraries are included in generative AI software, which is intended to make it easier to create machine learning models that can produce original and contextually relevant content. These software solutions frequently include features like pre-trained models, model training interfaces, and APIs that enable developers, data scientists, and companies to take advantage of generative AI capabilities for their particular use cases.

In the services area, generative AI-related professional help, knowledge, and support are provided. This includes services like advice, customization, implementation, upkeep, and training that are provided by generative AI experts and organizations. Businesses can use generative AI services to guarantee the successful deployment and continuous upkeep of generative AI applications, integrate customized solutions into their current workflows, or obtain advice on optimizing models.

  • By Technology

Based on the technology, the global generative AI market is categorized into generative adversarial networks (GANs), transformers, variational auto-encoders, and diffusion networks. The transformers category leads the global generative AI market with the largest revenue share in 2023. Transformers are neural network topologies based on attention that are particularly good at identifying long-range dependencies in data. Transformers, particularly large-scale models like OpenAI's GPT (Generative Pre-trained Transformer), have shown impressive capabilities in producing coherent and contextually appropriate text despite being originally built for natural language processing tasks. Because of their versatility, transformers have been applied to a number of domains outside of language, such as machine translation and image creation.

Probabilistic generative models, or VAEs, concentrate on discovering the input data's underlying distribution. They are made up of a decoder that reconstructs data from samples in this space and an encoder that maps input data to a probabilistic latent space. By simulating the data diffusion process and illustrating how a signal changes over time, diffusion models tackle generative challenges. Through iterative refinement, these models eventually produce data by learning the conditional probability distribution of the data given its past. Diffusion networks are becoming more and more popular because of their capacity to produce sharp images with an emphasis on retaining minute details.

GANs are made up of a generator and a discriminator, two neural networks that compete with one another. The discriminator assesses the validity of the artificial data that the generator produces. GANs are very good at generating images and videos, transferring styles, and manipulating content because of this adversarial training, which encourages the production of extremely realistic content.

  • By End-Use

Based on end-use, the global generative AI market is segmented into media & entertainment, BFSI, IT & telecommunication, healthcare, automotive & transportation, gaming, and others. The media & entertainment segment dominates the generative AI market. In the media and entertainment sector, generative AI is widely used for content generation, augmentation, and personalization. Applications include everything from producing music and improving virtual reality experiences to producing lifelike graphics and special effects for motion pictures and video games.

Generative AI is used in the BFSI industry for activities including financial modeling, risk assessment, and fraud detection. Through process automation, investment strategy optimization, and the provision of individualized financial advice, technology enhances consumer experiences. Generative AI is used in the IT and telecommunications industry for applications such as natural language processing in customer care, predictive maintenance, and network optimization. Generative AI-powered chatbots and virtual assistants improve client interactions and expedite corporate processes.

Generative AI plays a significant role in healthcare by aiding with medical picture analysis, drug discovery, and patient data interpretation. It makes it possible to create artificial datasets for model validation and training, which leads to more precise diagnosis and individualized treatment regimens. Generative AI is utilized in the automobile sector to improve user interfaces, optimize production processes, and create and test autonomous vehicles. It helps in building accurate models to test vehicle behavior and anticipate possible safety problems.

  • By Application

Based on application, the global generative AI market is divided into computer vision, natural language processing (NLP), robotics and automation, content generation, chatbots & intelligent virtual assistants, predictive analytics, and others. The natural language processing category dominates the market with the largest revenue share in 2023. The relationship between computers and human language is the main emphasis of NLP. For NLP tasks like sentiment analysis, language translation, and text production, generative AI is essential. Cutting-edge language models, such as OpenAI's GPT (Generative Pre-trained Transformer), use generative AI to produce text that makes sense and is relevant to the context.

Generative AI makes it easier to create robotic behaviors, plan motion, and automate tasks in the field of robotics and automation. It gives robots the ability to learn from their experiences, adjust to changing settings, and produce reactions in response to sensory inputs. Generative artificial intelligence (AI) is used in content generation to produce text, video, and image content on its own. Generative models are widely used in marketing, design, and the creative industries to help create unique and varied content.

Chatbots and virtual assistants are powered by generative AI because it allows them to comprehend natural language inquiries and provide contextually relevant answers. These apps facilitate effective communication across a range of businesses, improve client relations, and expedite support services. Predictive analytics benefits from generative AI's ability to forecast trends, spot patterns, and make data-driven judgments. Generative models are used in sectors such as manufacturing, healthcare, and finance to produce insights and support decision-making by analyzing historical data.

  • By Model

Based on the model, the global generative AI market is categorized into large language models, image & video generative models, multi-modal generative models, and others. The large language model’s category leads the global generative AI market with the largest revenue share in 2023. In the generative AI market, large language models are a popular category, best represented by models such as OpenAI's GPT (Generative Pre-trained Transformer). Natural language processing tasks including text production, language translation, and context interpretation are the main applications for these models. They are useful for applications in content generation, conversational agents, and automated writing because they make use of massive volumes of pre-existing linguistic data to generate coherent and contextually appropriate text.

Generative models for images and videos concentrate on producing and modifying visual content. Notable instances include the use of Variational Autoencoders (VAEs) to produce a variety of visual outputs and Generative Adversarial Networks (GANs) for picture synthesis. For example, multi-modal generative models use text and graphics to incorporate data from multiple modalities. These models make use of the synergies between different kinds of data to produce content that is rich in linguistic and visual elements.

 

Global Generative AI Overview by Region

The global generative AI market is categorized into North America, Europe, Asia-Pacific, and the Rest of the World. North America emerged as the leading region, capturing approximately 33.8% of the market share in 2023.

Throughout the forecast period, Asia-Pacific is anticipated to post a significant CAGR.

 

 

Global Generative AI Competitive Landscape

In the global generative AI market, a few major players exert significant market dominance and have established a strong regional presence. These leading companies remain committed to continuous research and development endeavors and actively engage in strategic growth initiatives, including product development, launches, joint ventures, and partnerships. By pursuing these strategies, these companies aim to strengthen their market position, expand their customer base, and capture a substantial share of the market.

Some of the prominent players in the global generative AI market include,

  • Adobe Inc.
  • Amazon Web Services, Inc.
  • D-ID
  • Genie AI Ltd.
  • Google LLC
  • International Business Machines Corp.
  • Microsoft Corp.
  • MOSTLY AI Inc.
  • Rephrase.ai
  • Synthesia, and various others.

 

Global Generative AI Market Recent Developments

  • In September 2023, Oracle Cloud Infrastructure (OCI) Generative AI is a service that provides access to models from Oracle partner Cohere and is housed on Oracle's cloud, as announced by Oracle Corp. The models are fully hosted on OCI, thus there is no calling back to Cohere.
  • In September 2023, Salesforce's Einstein 1 Platform is an AI-enabled layer that maps data sources, both structured and unstructured, to the company's metadata system, thereby integrating them with the Data Cloud. Einstein Copilot is a part of Einstein 1.
  • In August 2023, A version of OpenAI's well-known chatbot service, ChatGPT Enterprise, was released. It offers enterprise-level protection and privacy, unrestricted usage, and enhanced performance. Workflow templates and API credits are included in the services, and the underlying GPT-4 model won't be trained using any client data—including prompts entered into ChatGPT Enterprise.
  • In April 2023, Microsoft Corp., a US technology business, and Epic Systems, an American healthcare software provider, worked together to integrate AI and extensive language model tools into Epic's EHR software. The goal of this collaboration is to assist healthcare providers in being more productive while carrying out less administrative work by using generative AI.

 

Scope of the Global Generative AI Market Report

Generative AI Market Report Segmentation

ATTRIBUTE

DETAILS

By Component

  • Software
  • Service

By Technology

  • Generative Adversarial Networks (GANs)
  • Transformers
  • Variational Auto-encoders
  • Diffusion Networks

 

By End-Use

  • Media & Entertainment
  • BFSI
  • IT & Telecommunication
  • Healthcare
  • Automotive & Transportation
  • Gaming
  • Others

By Application

  • Computer Vision
  • Natural Language Processing (NLP)
  • Robotics and Automation
  • Content Generation
  • Chatbots & Intelligent Virtual Assistants
  • Predictive Analytics
  • Others

By Model

  • Large Language Models
  • Image & Video Generative Models
  • Multi-modal Generative Models
  • Others

By Geography

  • North America (USA, and Canada)
  • Europe (UK, Germany, France, Italy, Spain, Russia and Rest of Europe)
  • Asia Pacific (Japan, China, India, Australia, Southeast Asia and Rest of Asia Pacific)
  • Latin America (Brazil, Mexico, and Rest of Latin America)
  • Middle East & Africa (South Africa, GCC, and Rest of Middle East & Africa)

Customization Scope

  • Available upon request

Pricing

  • Available upon request

 

Objectives of the Study

The objectives of the study are summarized in 5 stages. They are as mentioned below:

  • Global Generative AI Market Size and Forecast: To identify and estimate the market size for the global generative AI market segmented by component, by technology, by application, by end-use, by model, region, and by value (in U.S. dollars). Also, to understand the consumption/ demand created by consumers of generative AI between 2019 and 2032.
  • Market Landscape and Trends: To identify and infer the drivers, restraints, opportunities, and challenges for the global generative AI market
  • Market Influencing Factors: To find out the factors that are affecting the sales of generative AI among consumers
  • Impact of COVID-19: To identify and understand the various factors involved in the global generative AI market affected by the pandemic
  • Company Profiling: To provide a detailed insight into the major companies operating in the market. The profiling will include the financial health of the company's past 2-3 years with segmental and regional revenue breakup, product offering, recent developments, SWOT analysis, and key strategies.

Intended Audience

  • Business Leaders and Executives
  • Technology Professionals and Developers
  • AI Enthusiasts and General Public
  • Governments, Associations, and Industrial Bodies
  • Investors and Trade Experts

Research Methodology

Our research methodology has always been the key differentiating reason which sets us apart in comparison from the competing organizations in the industry. Our organization believes in consistency along with quality and establishing a new level with every new report we generate; our methods are acclaimed and the data/information inside the report is coveted. Our research methodology involves a combination of primary and secondary research methods. Data procurement is one of the most extensive stages in our research process. Our organization helps in assisting the clients to find the opportunities by examining the market across the globe coupled with providing economic statistics for each and every region.  The reports generated and published are based on primary & secondary research. In secondary research, we gather data for global Market through white papers, case studies, blogs, reference customers, news, articles, press releases, white papers, and research studies. We also have our paid data applications which includes hoovers, Bloomberg business week, Avention, and others.

Data Collection

Data collection is the process of gathering, measuring, and analyzing accurate and relevant data from a variety of sources to analyze market and forecast trends. Raw market data is obtained on a broad front. Data is continuously extracted and filtered to ensure only validated and authenticated sources are considered. Data is mined from a varied host of sources including secondary and primary sources.

Primary Research

After the secondary research process, we initiate the primary research phase in which we interact with companies operating within the market space. We interact with related industries to understand the factors that can drive or hamper a market. Exhaustive primary interviews are conducted. Various sources from both the supply and demand sides are interviewed to obtain qualitative and quantitative information for a report which includes suppliers, product providers, domain experts, CEOs, vice presidents, marketing & sales directors, Type & innovation directors, and related key executives from various key companies to ensure a holistic and unbiased picture of the market. 

Secondary Research

A secondary research process is conducted to identify and collect information useful for the extensive, technical, market-oriented, and comprehensive study of the market. Secondary sources include published market studies, competitive information, white papers, analyst reports, government agencies, industry and trade associations, media sources, chambers of commerce, newsletters, trade publications, magazines, Bloomberg BusinessWeek, Factiva, D&B, annual reports, company house documents, investor presentations, articles, journals, blogs, and SEC filings of companies, newspapers, and so on. We have assigned weights to these parameters and quantified their market impacts using the weighted average analysis to derive the expected market growth rate.

Top-Down Approach & Bottom-Up Approach

In the top – down approach, the Global Batteries for Solar Energy Storage Market was further divided into various segments on the basis of the percentage share of each segment. This approach helped in arriving at the market size of each segment globally. The segments market size was further broken down in the regional market size of each segment and sub-segments. The sub-segments were further broken down to country level market. The market size arrived using this approach was then crosschecked with the market size arrived by using bottom-up approach.

In the bottom-up approach, we arrived at the country market size by identifying the revenues and market shares of the key market players. The country market sizes then were added up to arrive at regional market size of the decorated apparel, which eventually added up to arrive at global market size.

This is one of the most reliable methods as the information is directly obtained from the key players in the market and is based on the primary interviews from the key opinion leaders associated with the firms considered in the research. Furthermore, the data obtained from the company sources and the primary respondents was validated through secondary sources including government publications and Bloomberg.

Market Analysis & size Estimation

Post the data mining stage, we gather our findings and analyze them, filtering out relevant insights. These are evaluated across research teams and industry experts. All this data is collected and evaluated by our analysts. The key players in the industry or markets are identified through extensive primary and secondary research. All percentage share splits, and breakdowns have been determined using secondary sources and verified through primary sources. The market size, in terms of value and volume, is determined through primary and secondary research processes, and forecasting models including the time series model, econometric model, judgmental forecasting model, the Delphi method, among Flywheel Energy Storage. Gathered information for market analysis, competitive landscape, growth trends, product development, and pricing trends is fed into the model and analyzed simultaneously.

Quality Checking & Final Review

The analysis done by the research team is further reviewed to check for the accuracy of the data provided to ensure the clients’ requirements. This approach provides essential checks and balances which facilitate the production of quality data. This Type of revision was done in two phases for the authenticity of the data and negligible errors in the report. After quality checking, the report is reviewed to look after the presentation, Type and to recheck if all the requirements of the clients were addressed.

Frequently Asked Questions

On the basis of Geography, the generative AI market is classified into North America, Europe, Asia Pacific, and the Rest of the world.
According to generative AI market research, the market is expected to grow at a CAGR of ~36.3% over the coming years.
Asia-Pacific is expected to register the highest CAGR during 2024 - 2032
North America held the largest share in 2023.
The major players operating in the global generative AI market include Adobe Inc.; Amazon Web Services, Inc.; D-ID; Genie AI Ltd.; Google LLC; International Business Machines Corp.; Microsoft Corp.; MOSTLY AI Inc.; Rephrase.ai; Synthesia, and various others.